Incorporating a Bayesian wide phonetic context model for acoustic rescoring

نویسندگان

  • Sakriani Sakti
  • Satoshi Nakamura
  • Konstantin Markov
چکیده

This paper presents a method for improving acoustic model precision by incorporating wide phonetic context units in speech recognition. The wide phonetic context model is constructed from several narrower context-dependent models based on the Bayesian framework. Such a composition is performed in order to avoid the crucial problem of a limited availability of training data and to reduce the model complexity. To enhance the model reliability due to unseen contexts and limited training data, flooring and deleted interpolation techniques are used. Experimental results show that this method gives improvement of the word accuracy with respect to the standard triphone model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Acoustic Model Precision by Incorporating a Wide Phonetic Context Based on a Bayesian Framework

Over the last decade, the Bayesian approach has increased in popularity in many application areas. It uses a probabilistic framework which encodes our beliefs or actions in situations of uncertainty. Information from several models can also be combined based on the Bayesian framework to achieve better inference and to better account for modeling uncertainty. The approach we adopted here is to u...

متن کامل

Dependency modeling with bayesian networks in a voicemail transcription system

In this paper we apply Bayesian networks to the problem of voicemail transcription. We use a Bayesian network system to test a variety of probabilistic models that model acoustic context in addition to phonetic state and acoustic observations. We use a context variable that has the ability to model contextual phenomena that are not implied by the linguistic sequence of phones (e.g. noise level ...

متن کامل

Novel Acoustic Modeling with Structured Hidden Dynamics for Speech Coarticulation and Reduction

We report in this paper our recent progress on the new development, implementation, and evaluation of the structured speech model with statistically characterized hidden trajectories. Unidirectionality in coarticulation modeling in such hidden trajectory models as presented in previous EARS workshops has been extended to bi-directionality (forward as well as backward in the temporal dimension),...

متن کامل

An HMM acoustic model incorporating various additional knowledge sources

We introduce a method of incorporating additional knowledge sources into an HMM-based statistical acoustic model. The probabilistic relationship between information sources is first learned through a Bayesian network to easily integrate any additional knowledge sources that might come from any domain and then the global joint probability density function (PDF) of the model is formulated. Where ...

متن کامل

Title of dissertation : SPEECH RECOGNITION BASED ON PHONETIC FEATURES AND ACOUSTIC LANDMARKS

Title of dissertation: SPEECH RECOGNITION BASED ON PHONETIC FEATURES AND ACOUSTIC LANDMARKS Amit Juneja, Doctor of Philosophy, 2004 Dissertation directed by: Carol Espy-Wilson Department of Electrical and Computer Engineering A probabilistic and statistical framework is presented for automatic speech recognition based on a phonetic feature representation of speech sounds. In this acoustic-phone...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005